Orthonormal Basis and Radial Basis Functions in Modeling and Identification of Nonlinear Block-Oriented Systems
نویسندگان
چکیده
Nonlinear block-oriented systems, including the Hammerstein, Wiener and feedbacknonlinear systems have attracted considerable research interest both from the industrial and academic environments (Bai, 1998), (Greblicki, 1989), (Latawiec, 2004), (Latawiec et al., 2003), (Latawiec et al., 2004), (Pearson & Pottman, 2000). It is well known that orthonormal basis functions (OBF) (Bokor et al., 1999) have proved to be useful in identification and control of dynamical systems, including nonlinear blockoriented systems (Gómez & Baeyens, 2004), (Latawiec, 2004), (Latawiec et al., 2003), (Latawiec et al., 2006), (Latawiec et al., 2004), (Stanisławski et al., 2006). In particular, an inverse OBF (IOBF) modeling approach has been effective in identification of a linear dynamic part of the feedback-nonlinear and Hammerstein systems (Latawiec, 2004), (Latawiec et al., 2004). On the other hand, regular OBF (ROBF) modeling approach has proved to be useful in identification of the Wiener system. The approaches provide the separability in estimation of linear and nonlinear submodels (Latawiec et al., 2004), thus eliminating the bilinearity issue detrimentally affecting e.g. the ARX-based modeling schemes (Latawiec, 2004), (Latawiec et al., 2003), (Latawiec et al., 2006), (Latawiec et al., 2004). The IOBF modeling approach is continued to be efficiently used here to model a linear dynamic part of the feedback-nonlinear and Hammerstein systems and regular OBF modeling approach is used to model a linear part of the Wiener system. The problem of modeling of a nonlinear static part of the nonlinear block-oriented system can be classically tackled using e.g. the polynomial expansion (Latawiec, 2004), (Latawiec et al., 2004) or (cubic) spline functions. Recently, a radial basis function network (RBFN) has been used to model a nonlinear static part of the Hammerstein and feedback-nonlinear systems and a very good identification performance has been obtained (Hachino et al., 2004), (Stanisławski, 2007), (Stanisławski et al., 2007). The concept is extended here to cover the Wiener system. This paper presents a new strategy for nonlinear block-oriented system identification, which is a combination of OBF modeling for a linear dynamic part and RBFN modeling for a nonlinear static element. The effective OBF approach is finally coupled with the RBFN modeling concept, giving rise to the introduction of a powerful method for identification of the nonlinear block-oriented system.
منابع مشابه
The method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کاملA meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملNumerical Solution of Nonlinear PDEs by Using Two-Level Iterative Techniques and Radial Basis Functions
Radial basis function method has been used to handle linear and nonlinear equations. The purpose of this paper is to introduce the method of RBF to an existing method in solving nonlinear two-level iterative techniques and also the method is implemented to four numerical examples. The results reveal that the technique is very effective and simple. Th...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملCone Crusher Model Identification Using Block-Oriented Systems with Orthonormal Basis Functions
In this paper, block-oriented systems with linear parts based on Laguerre functions is used to approximation of a cone crusher dynamics. Adaptive recursive least squares algorithm is used to identification of Laguerre model. Various structures of Hammerstein, Wiener, Hammerstein-Wiener models are tested and the MATLAB simulation results are compared. The mean square error is used for models val...
متن کامل